CBRN Red Cross Seminar December 8, 2016

Medical aspects of Radiation Emergencies

Dr. Eduardo Herrera Reyes Medical Emergency Preparedness specialist Incident and Emergency Centre

Objective

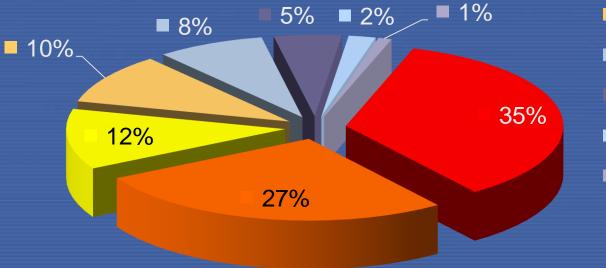
 Understand the basic concepts of and requirements for the management of medical consequences of a radiation emergency

Image courtesy IAEA

Radiation Emergency: Definition

"A non-routine situation that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment and in which there is, or is perceived to be, a hazard due to: (a) The energy resulting from a nuclear chain reaction or from the decay of the products of a chain reaction; or (b) Radiation exposure"

[IAEA Safety Glossary, 2007]


Radiation Emergency: Spectrum

Event	Affected individuals
Radiation accident	Workers Members of the public Responders
Medical mishap	Patients
Malevolent acts	Members of the public Responders

"Major" Worldwide Radiation Accidents

- Number: ~500 accidents
- Exposed persons: ~3,000
- Fatalities: ~140
 - Radiation related: ~130
 - Not related to radiation: ~10

*M. E. Berger et al.: Medical Management of Radiation Injuries. Occupational Medicine 2006;56:162–172 doi:10.1093/occmed/kql011. * Medical Preparedness and Response for a Nuclear or Radiological Emergency. Training Materials. IAEA, VIENNA, 2014. EPR-MEDICAL/T-2014/CD © IAEA, 2014

industry
irradiators
medicine
laboratory
not ident./other
reactors
education
military

Discussion

"Why do people fear ionizing radiation?"

Can you give examples?

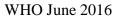
Risk Perception: Hiroshima-Nagasaki

Hiroshima

Newspapers

Good or Bad Radiation?

Radiation Emergency: Images (cont)


Risk Perception: other risks

WHO

- Tobacco kills up to half of its users
- Kills 6 million people each year
- 600 000 are the result of nonsmokers being exposed to second-hand smoke.

WHO

- 1.25 million people died from road traffic injuries in 2013
- 20-50 million people sustaining non-fatal injuries

WORLD HEALTH STATISTICS: 2016 Indicator 3.6.1: Death rate due to road traffic injuries

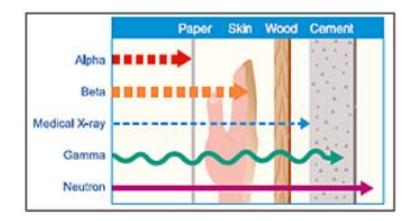
Inadequate consumption of fruits and vegetables increases the risk of cardiovascular disease and some cancers and accounts for some

1.7 million deaths a year.

World Heart Federation

Radiation Emergency: Images

Radiation Emergency: Images

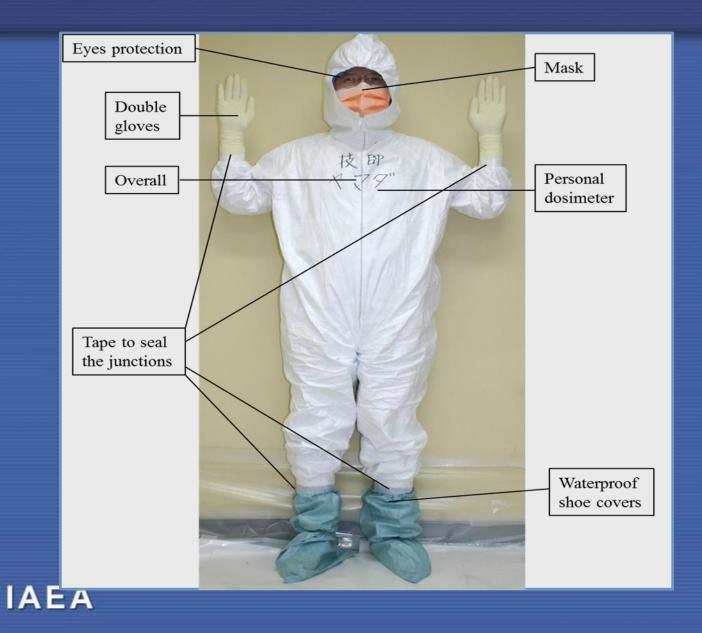

Importance of Plain Language Explanations

Not clearly answering this question has resulted in:

- Voluntary abortions
- Unsafe evacuation of patients (deaths)
- Not treating patients
- Stigma
- Economic impacts
- Psychological distress

• etc.

Alpha



Gamma

Beta

Irradiation vs contamination

Triage at the Emergency Department

Image courtesy NIRS

 Medical assessment and triage at hospital

First aid and resuscitation
Medical stabilization

Radiological assessment

Principles

- A radiological assessment or decontamination should never take precedence over significant medical conditions
- Action taken to avert exposure is much more effective than the provision of medical treatment after exposure has occurred

Supplies

- Protective clothing
- Instrumentation and dosimeters
- Material for securing the area and controlling contamination (i.e. rope and signs)
- Materials for bioassay
- Materials for decontamination
- Life support and other medical equipment and supplies

Example of Area Setup

Warm zone

Control lines

Hot zone

Covering equipment

container

Images courtesy NIRS

Example of Floor Covering

Edges should be taped down to avoid tripping

AEA

Paper sheet

Images courtesy NIRS

Wearing Protective Clothing

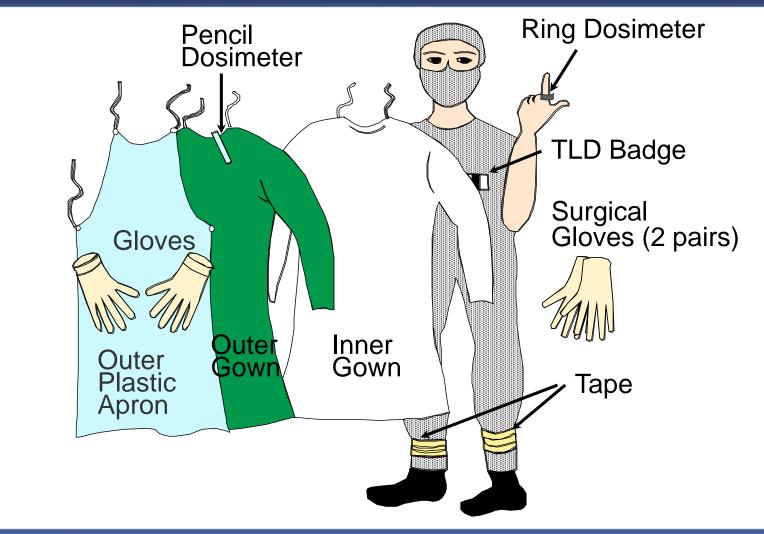


Image from R H Wagner, et. al. RadioGraphics 1994; 14:387-396

Protective Clothing

• Purpose of protective clothing:

- Keep bare skin and personal clothing free of contaminants
- Against contamination not external exposure

Examples of Protective Clothing

Eye protection Tape Personal dosimeter

Waterproof shoe covers

Surgical clothing

Cap Mask Surgical gloves Name (front and back) Gown

Tape

Management of Contaminated Patient

- Ensure stabilization of patient
- Survey whether contaminated or not
- Identify decontamination priority
 - 1. Wound
 - 2. Orifices (eyes, mouth, nose, ears)
 - 3. High level intact skin
 - 4. Low level intact skin

Laboratory Studies

Blood count: attention to lymphocytes

Whole-body exposure diagnosis and dose assessment

• Cytogenetic analysis

 Urine and stool samples for later evaluation of radionuclide incorporation

Internal contamination diagnosis and burden assessment

 Other laboratory studies for diagnosis and medical treatment if necessary

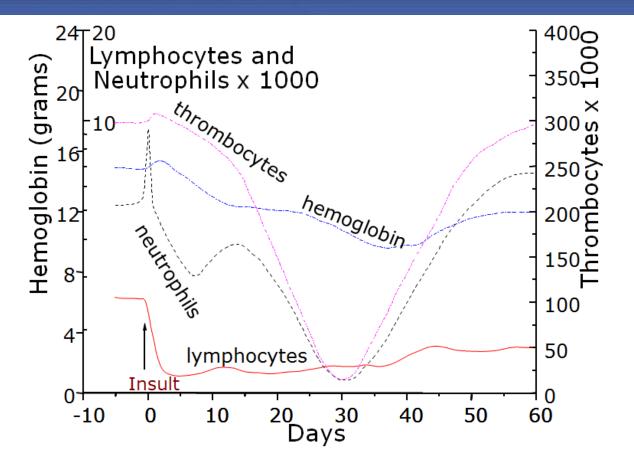
In all Cases of Radiation Injury

Samples needed

Why?

Complete blood count (CBC), followed with absolute lymphocyte counts every 6 hours for 48 hours when history indicates possibility of total-body irradiation

Routine urinalysis


To assess the radiation dose; initial counts establish a baseline, subsequent counts reflect the degree of injury

How?

Choose a noncontaminated area for veni-puncture; cover puncture site after collection

To determine if kidneys are functioning normally and establish a baseline of urinary constituents; especially important if internal contamination is a possibility Avoid contaminating specimen during collection; if necessary, give the patient plastic gloves to wear for collection of specimen; label specimen "Number I," with date and time

Example: CBC w/ differential after high dose

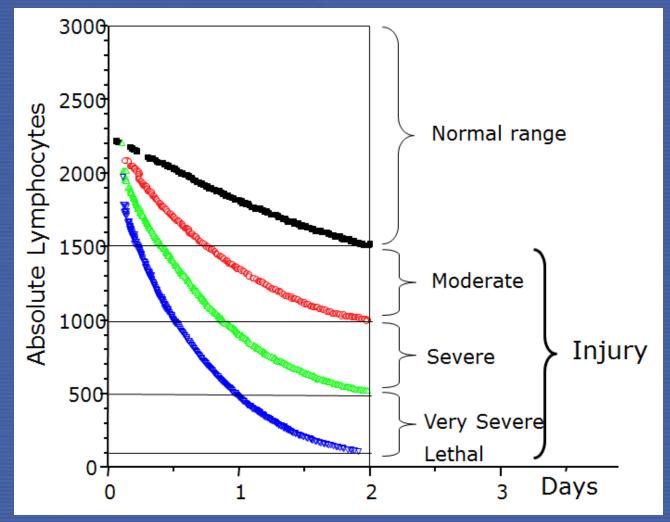
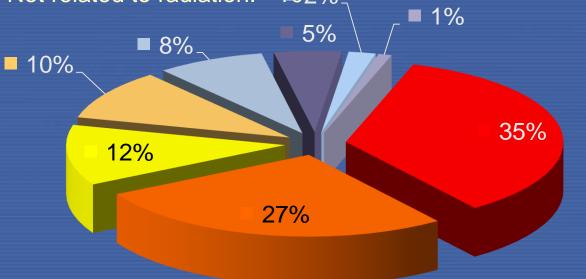

Lymphocytes are white blood cells that govern the body immune response (directs fighting disease and infection) Neutrophils are a subset of white blood cells that fight infection Thrombocytes (platelets) are for clotting Hemoglobin is the component of red blood cells that carry oxygen

Image courtesy IAEA


Lymphocyte depletion kinetics

Images courtesy IAEA

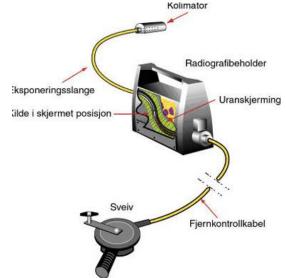
"Major" Worldwide Radiation Accidents

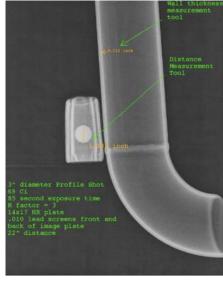
- Number: ~500 accidents
- Exposed persons: ~3,000
- Fatalities: ~140
 - Radiation related: ~130
 - Not related to radiation: ~102%.

industry
irradiators
medicine
laboratory
not ident./other
reactors
education
military

*M. E. Berger et al.: Medical Management of Radiation Injuries. Occupational Medicine 2006;56:162–172 doi:10.1093/occmed/kql011. * Medical Preparedness and Response for a Nuclear or Radiological Emergency. Training Materials. IAEA, VIENNA, 2014. EPR-MEDICAL/T-2014/CD © IAEA, 2014

Distribution

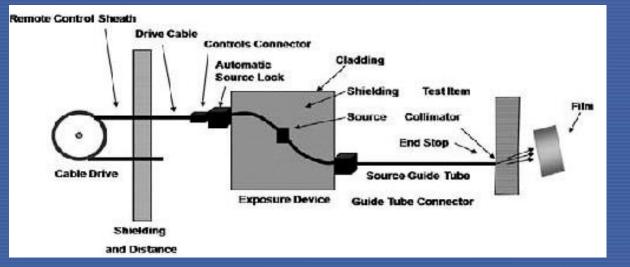

Sector	Number of cases
Industrial	33 (27: gamma-graphy)
Radiotherapy	8
Orphan	2
Criticality	1
Inspection	1
Medicine (occupational)	1
Total	46


Medical Preparedness and Response for a Nuclear or Radiological Emergency. Training Materials. IAEA, VIENNA, 2014. EPR-MEDICAL/T-2014/CD © IAEA, 2014

Industrial Radiography

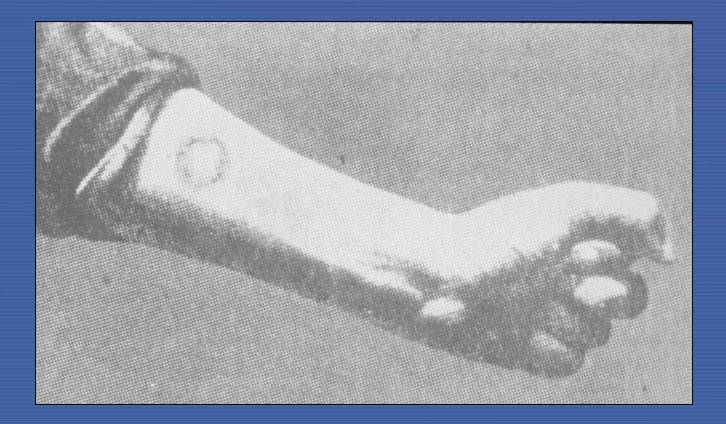
Industrial radiography

Industrial radiography



Industrial radiography is used to test:

- •Gas and oil pipelines.
- •Metal welding.
- •Boilers.
- •Vehicle parts.
- •Aircraft parts.


Industrial radiography

Iridium-192 is a strong gamma ray emitter.

Radiopathology of the Skin

Radiopathology of the Skin (1)

Dry desquamation

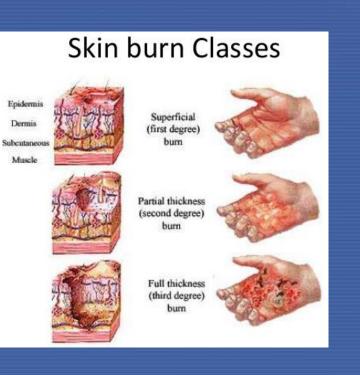
- Dose in derma from 8 to 12 Gy
- Dry epithelitis, with desquamation
- Compensation of epidermis leakage:
 - protection of the cutaneous barrier
 - absence of serum exudation
 - absence of skin crust formation
- Epidermis thickening: rough, dry, pigmented aspect

Radiopathology of the Skin (2)

Moist desquamation

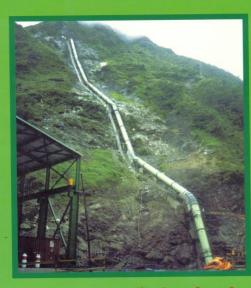
- Dose in derma from 12 to 20 Gy
- Epidermis leakage sufficient for:
 - serum exudation
 - skin crust formation
- 3 to 4 weeks for epidermis leakage, blistering formation, apparition of dripping, pink skin area which dry and form skin crust
- Stripped area covered by fibrin

Radiopathology of the Skin (3)


Radionecrosis

Dose >30 Gy

- Endothelium loss, drop of capillary density, drop of blood perfusion
- Huge dermal inflammatory response
- Stripped area covered by fibrin
- Intense and long-lasting moist desquamation induced secondary dermal lesion

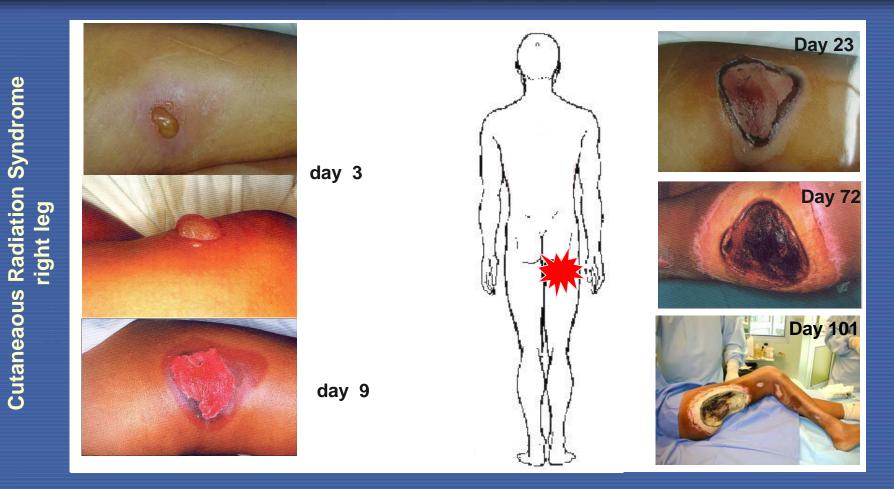


Specificity of the Radiological Burn

- The radiological burn is a dynamic process
- Unpredictable spatiotemporal evolution with successive inflammatory waves
- Pain +++ resistant to classical drugs
- The occurrence of pain is prognostic for a new wave of recurrence

The Radiological Accident in Yanango, Peru, 1999

The Radiological Accident in Yanango


Initial Lesion – Day 3

On 21 February (Day 1), the patient was admitted to Institute of Neoplasic Diseases (INEN) in Lima

Hospitalization in France

Hospitalization in France (on Day 101) in the Burn Treatment Department (HIA Percy), 1 June 1999.

Courtesy: IRSN – HIA Percy (France)

Clinical Evolution After Return of Patient to Peru

Day > 240

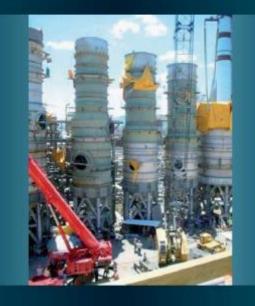
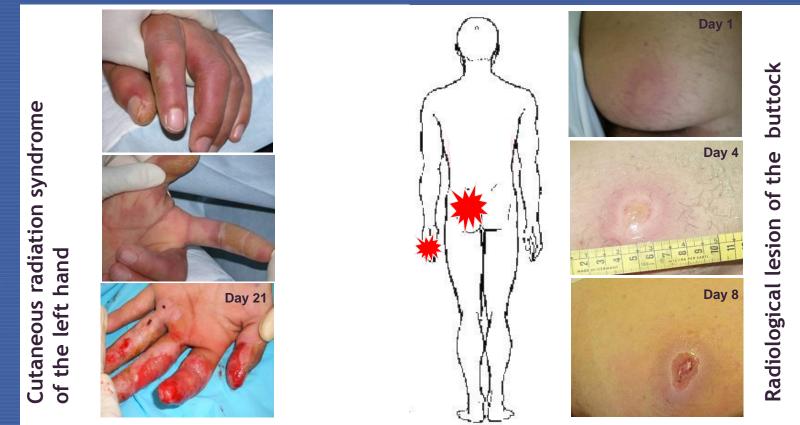
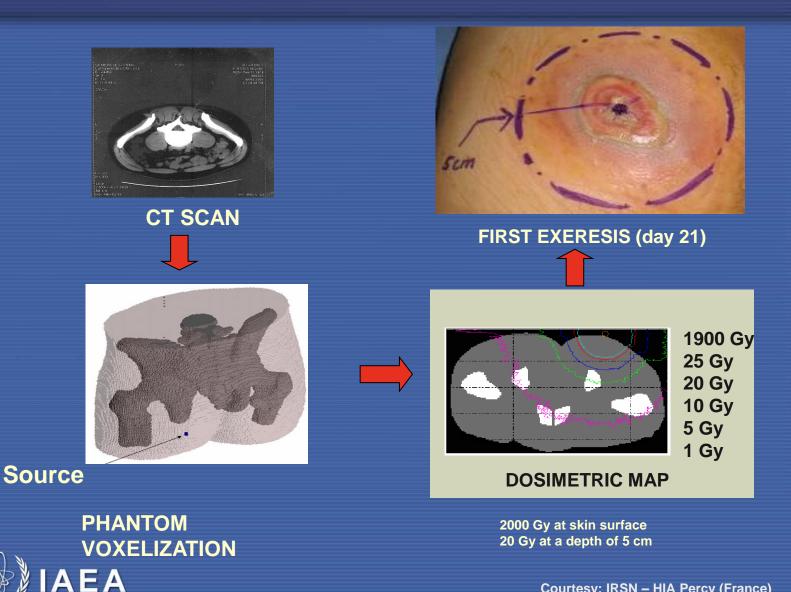


Photo Credita: Dr. Oscar Barriga (INEN, Peru)

Chile 2005

The Radiological Accident in Nueva Aldea




Clinical Symptoms (1)

Time of exposure: 40 min., including 10 min. with the radiation source in back pant pocket. Localized irradiation suspected : buttock, hands, head and chest.

Hospitalized in France on 26 December 2005, in the Burn Treatment Department of the Percy Hospital, for a cutaneous radiation syndrome IAEA Courtesy: IRSN – HIA Percy (France)

New Approach by Dosimetry Guided Surgery

Buttock Lesion Evolution

109 days P.I.

162 days P.I.

204 days P.I. Courtesy: IRSN – HIA Percy (France)

Evolution of Hand Lesion

1 month

2 months

Courtesy : IRSN - HIA Percy (France)

3 months

September 2013 (6 years after accident)

Radiological Accident 2012 - 2013. Chilca, Peru.

- January 11-12, 2012 // January to September 2013.
- Industrial radiography company.
- 3 workers overexposed
- 3 formal requests for assistance were sent from Peruvian Authorities to the IAEA under the Assistance Convention.
 - 1. Dose reconstruction and medical advice (held in Peru January 20, 2012).
 - 2. Medical treatment of the worker who had been most severely exposed during the accident (held in France February 1, 2012).
 - 3. Medical treatment for recurrence of symptoms (held in Chile May 18, 2013).
- Assessment by through RANET.

Radiological Accident 2012-2013. Chilca, Peru.

TABLE 9. DOSE ESTIMATION BASED ON BIOLOGICAL DOSIMETRY (IRSN DATA)			
Person	Whole body dose [Gy]	[Confidence Interval]	Partial body irradiation
Worker 1	1.86	[1.56 - 2.20]	Yes
Co-Worker 1	0.45	[0.23 - 0.75]	Could not be determined
Co-Worker 2	0.75	[0.50 - 1.06]	Could not be determined
RPO	Below detection limit	Not applicable	Could not be determined
Worker 2	Below detection limit	Not applicable	Could not be determined

Photos and table from "The Radiological Accident In Chilca, Peru. IAEA"

30 days post accident

33 days post accident Moist desquamation

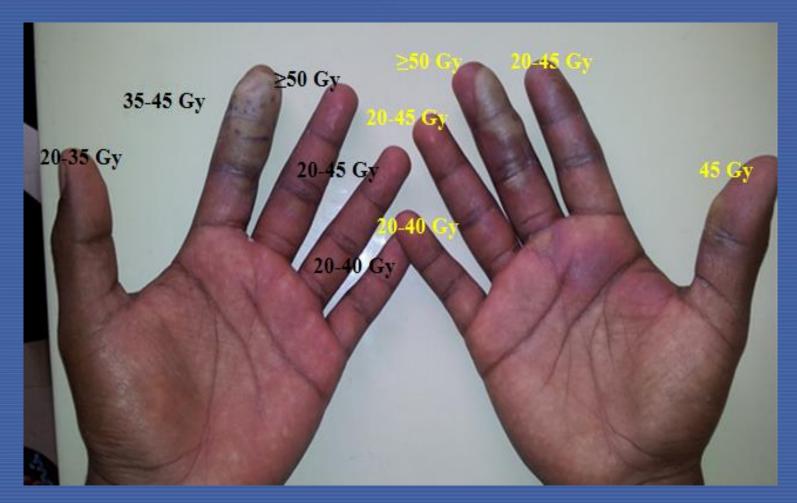
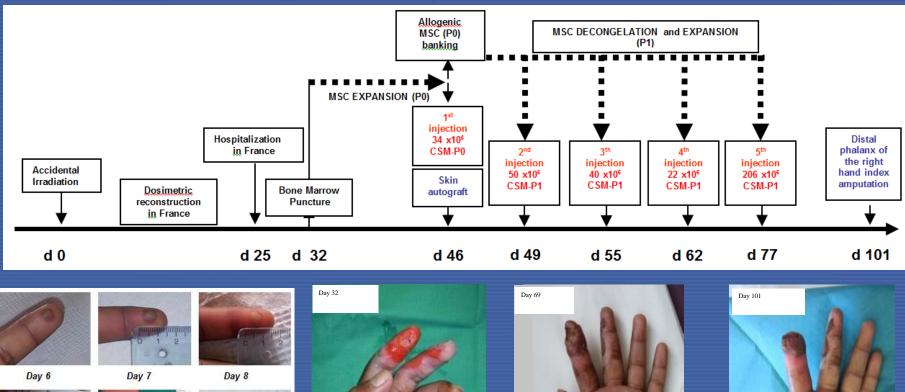



Photo courtesy IRSN- FRAMCE. Proto and table from "The Radiological Accident In Chilca, Peru. IAEA" Proto and table from "The Radiological Accident In Chilca, Peru. IAEA"

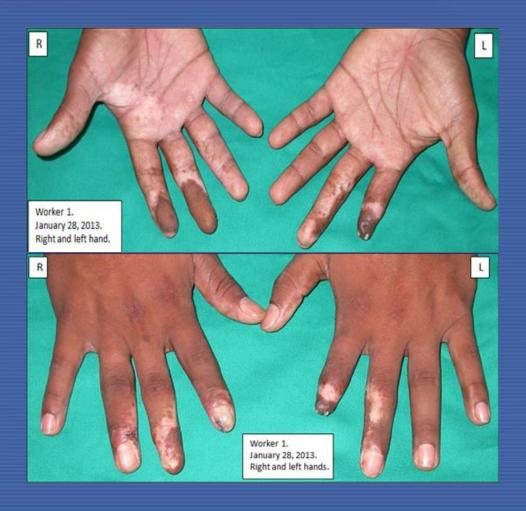
Radiological Accident 2012. Chilca, Peru.

Day 7

Day 12

AEA

Day 13



Photos and table from "The Radiological Accident In Chilca, Peru. IAEA"

Severe Recurrence Cutaneous Radiation syndrome 2013

Treatment in Chile 2013

Radiological Accident 2012-2013. Chilca, Peru.

- First combined treatment applied in Latin-America (Surgery and Mesenchymal Stem Cells).
- IEC in coordination with 9 Institutions in 3 different countries (Peru-France and Chile). More than 40 professionals involved in the treatment.
- Participation of experts through RANET.
- The patient is under medical follow-up in Peru. No new recurrences have been reported.

Radiological Accident 2014. Ventanilla - Callao, Peru.

- February 14, 2014
- Industrial radiography company
- One worker overexposed
- Peruvian Government requested assistance under Convention Assistance to the IAEA
- Two Assistance Missions were conducted
 - Medical assessment, held in Lima (April May, 2014).
 - Medical treatment, held in Brazil at three stages (July November, 2014).

Peru: Evolution of the patient

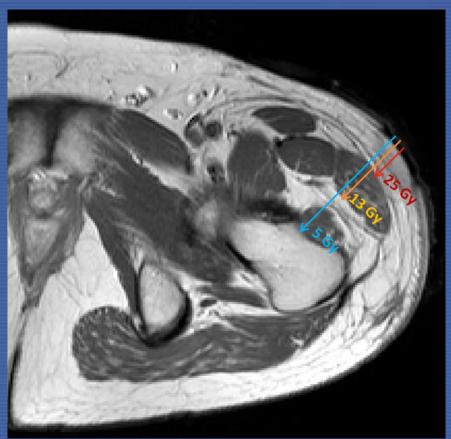
From IPEN report "Reconstruccion del accidente". 2014

76

First IAEA Assistance Mission in Peru

Dr. Eduardo Herrera Reyes - IEC

Patient SCCJ, 76 days after exposure, lesion in the left upper thigh and inguinal area (April 30, 2014).


RANET: Biodosimetry LBDNet – ARN Argentina

509 cells were analysed, absorbed dose estimated 0,72Gy to whole body [0,38 - 0,96]. May 15, 2014

RANET: Dose Reconstruction – IRSN, France

Dosimetric reconstruction performed by the IRSN

- The estimated absorbed dose at the necrosis area 50 Gy.
- 2 cm in depth, 20-25 Gy.
- The absorbed dose to the muscle next to the lesion is estimated between 25 Gy (entrance) and 13 Gy (back part).
- The absorbed dose estimated to the adjacent bone (femur) 5 Gy.

Second IAEA Assistance Mission in Brazil

- Combined protocol: Surgery and Mesenchymal Stem Cells injections (4)
- RANET activation: Assessment by French and other experts
- Assistance provided in 3 stages
- Treatment performed in Brazil (July to November 2014)
- Patient currently under medical followup in Peru.
- More than 30 professionals, 9 institutions in 4 countries, coordinated by the IEC
- 2nd Inter-regional treatment applied in Latin-America

AEA

Example

- Fire in the abracadabra company (11am)
- 2 industrial radiography teams in place working during the day (3 persons each)
- 30 persons working during starting of fire
- 10 persons injured
- 1 person heart attack
- 3 persons present skin burns from the radiograph company
- Medical team do not want to treat patient for the risk of "radiation"

Conclusions

- Life is a priority.
- Multidisciplinary team should be prepared.
- Consider international cooperation through your national authorities.

Acknowledgements

IRSN

- Mr Marc Benderitter
- Ms Radia Tamarat
- Percy Hospital
 - Prof. Eric Bey
 - Prof. Jean-Jacques Lataillade
- CCHEN
- IPEN
- CNEN
- ARN
- Mutual de Seguridad
- HNMD

Thank you !

iec.iaea.org iec-information@iaea.org @IAEAIEC

